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ABSTRACT

Accurate assessment of waterlogging susceptibility is important for maintaining productivity and ecological sta-
bility in oil palm plantations, particularly in the face of increasing climate-driven rainfall variability. Direct field
measurements of plant and soil water status provide reliable information but are labor-intensive and impractical
for repeated monitoring at plantation scale. This study proposes a data-driven predictive modelling framework to
assess waterlogging susceptibility in oil palm plantations using UAV-derived multispectral information. Field and
aerial data were collected at the Oil Palm Teaching Farm, IPB University, Indonesia, during four seasonal observa-
tion periods (July 2024, October 2024, January 2025, and April 2025). Multispectral orthomosaics were generated,
and twelve vegetation indices were extracted at the individual palm canopy level. Soil moisture, leaf water content,
and leaf greenness were measured in the field and used as reference data to develop predictive models based on
Random Forest Regression, Partial Least Squares Regression, and Support Vector Regression. The modelling
results showed that Partial Least Squares Regression provided the best performance for soil moisture estimation
(R?=10.61), while Random Forest Regression achieved high accuracy in predicting leaf greenness (R* = 0.83). In
contrast, all models exhibited limited performance in estimating leaf water content (R? < 0.50), indicating low sen-
sitivity of multispectral vegetation indices to variations in oil palm leaf water status. Consequently, waterlogging
susceptibility mapping was conducted based on the integrated spatial patterns of predicted soil moisture and leaf
greenness. The resulting susceptibility maps successfully identified palms vulnerable to prolonged waterlogging
and associated productivity decline. These findings demonstrate that data-driven predictive modelling using UAV
multispectral data can provide a practical and scalable approach for spatially explicit assessment of waterlogging
susceptibility in oil palm plantations, supporting informed decision-making in precision and environmentally sus-
tainable plantation management.

Keywords: climate change, machine learning, multispectral imagery, oil palm, precision agriculture, unmanned
aerial vehicle, waterlogging susceptibility.

INTRODUCTION occupying only 5% of the land used for veg-
etable oil production (Jackson et al., 2019). The
Oil palm (Elaeis guineensis Jacq.) is a ma-  high productivity and economic value of oil

jor source of vegetable oil, accounting for 40% palm enable the sustainable fulfillment of future
of global vegetable oil production, despite  oil demands (Murphy et al., 2021). To ensure
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sustainability, the oil palm industry is focusing
on increasing yields, improving oil quality, and
enhancing climate adaptation through germ-
plasm exploitation and biotechnology (Malike
et al., 2024). However, oil palm productivity is
heavily influenced by climate factors, with water
availability being the cornerstone of sustainable
production (Rauf, 2025). Global climate change
exacerbates this dependence, driving increased
volatility in crude palm oil (CPO) yields through
changes in precipitation patterns and other fac-
tors. Two unfavorable conditions, water deficit
and excess, disrupt the balance of physiological
processes in crops. Water deficit causes stoma-
tal closure, which reduces photosynthesis and
disrupts nutrient uptake, leading to decreased
growth (Neto et al., 2021) and reduced fruit
bunch production (Khor et al., 2021). Conversely,
prolonged waterlogging or flooding causes root
hypoxia, which inhibits root respiration, triggers
root rot, and ultimately reduces crop productivity
(Abubakar et al., 2021). Therefore, effective and
timely monitoring of plant water status is crucial
for the proper management of water stress, al-
lowing interventions in plantation management
to maintain the yield.

Conventional methods for monitoring crop
water status, such as direct soil sampling or
leaf water content measurements, are primarily
point-based, labor-intensive, and impractical for
large-scale plantations (Jha et al., 2025). Remote
sensing technology offers a transformative solu-
tion for achieving efficiency and effectiveness.
By measuring the electromagnetic radiation re-
flected by plant tissues, remote sensing enables
non-destructive and spatial assessments of crop
status. Unmanned aerial vehicle (UAV) are fur-
ther revolutionizing this field by bridging the gap
between lower spatial resolution satellite imagery
and the limitations of ground-based agronomic
surveys. UAV equipped with multispectral sen-
sors provide data at high spatial and temporal
resolutions, enabling precise monitoring of with-
in-field variability. This capability is particularly
important for perennial crops, such as oil palms,
where even subtle changes in canopy reflectance
can be observed.

Vegetation indices (VI) obtained from re-
mote sensing platforms have emerged as power-
ful non-destructive proxies for monitoring plant
and soil biophysical parameters (Falcioni et al.,
2023; Zeng et al., 2022). Previous studies have
demonstrated the effectiveness of combining

spectral indices with machine learning algo-
rithms to achieve high-precision estimates. For
leaf water content (LWC) estimation using hy-
perspectral data, techniques such as competitive
adaptive reweighted sampling (CARS) combined
with support vector regression (SVR) or random
forest (RF) algorithms have demonstrated high
accuracy and robustness, with consistent results
across ground-based and UAV platforms (Ji et al.,
2025; Wu et al., 2025). Machine learning model
also significantly outperformed the traditional lin-
ear regression model for estimating chlorophyll
content. Studies on crops such as winter wheat,
corn, and canary have consistently found that al-
gorithms such as RF, SVR, and artificial neural
networks (ANNs) provide superior results, with
one ANN model for rice achieving very low error
rates (Guo et al., 2022; Sarkar et al., 2018). Other
studies have also shown a significant positive cor-
relation between soil moisture (SM) and chloro-
phyll content, suggesting that the VI can serve as
an indicator of subsurface conditions (Ge et al.,
2019; Wang et al., 2021).

Although the use of remote sensing technol-
ogy has developed rapidly in monitoring plant
physiological conditions, studies on monitoring
and estimating soil moisture, leaf water content,
and leaf greenness values in oil palm plantations
are still relatively limited, especially under condi-
tions of dynamic climate variations, such as pre-
cipitation fluctuations. Furthermore, the impact
of climate variation on the accuracy of multispec-
tral vegetation index-based estimation models
has not been thoroughly studied. Therefore, this
study aims to: (1) estimate soil moisture, leaf wa-
ter content, and leaf greenness from UAV mul-
tispectral imagery using machine learning, (2)
develop a waterlogging susceptibility classifica-
tion, and (3) create spatial-temporal waterlogging
susceptibility maps.

MATERIAL AND METHODS

Study area

This study was conducted at the Oil Palm
Teaching Farm, Cikabayan, IPB University, Bo-
gor, Indonesia (6 °33* 00.3 “S 106 °43° 03.2” E),
spanning an area of approximately 8 hectares
(Figure 1). Oil palm plants were planted in 2011
and have entered the mature phase. The research
was carried out from July 2024 to October 2025.
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Figure 1. Study area at the Oil Palm Teaching Farm, Cikabayan, IPB University, Bogor, Indonesia

Soil and leaf data collection

A field survey and observational approach
were employed, integrating agronomic mea-
surements with multispectral UAV imagery.
Field measurements, including soil moisture
(SM), leaf water content (LWC), and leaf green-
ness (LG), were conducted four times: in July
2024, October 2024, January 2025, and April
2025 (Figure 2). A purposive sampling method
was employed to select 45 sample plants (rep-
resenting 5% of the population, as indicated by
a yellow circle on the map in Figure 1), chosen
to cover a representative range of observed bio-
physical conditions across the plantation. Soil
moisture was determined using the gravimetric
method, whereby 50 g of soil samples were col-
lected in triplicate using an auger, weighed for
the wet weight, oven-dried at 105 °C for 24 h,
and then re-weighed for dry weight. SM was cal-
culated as:

Wet weight —
— Dry weight

(1
x 1009
Dry weight &

SM =

The 17th leaf of each sample plant was also
analyzed. LWC was determined by collecting
leaf samples, recording the fresh weight, cutting
leaves into smaller pieces, oven-drying at 80 °C

338

for 48 h to obtain dry weight, and applying the

following formula:

Fresh weight —
— Dry weight
Fresh weight

2

LWC = X 100%

The LG value was measured directly using
a SPAD-502 chlorophyll meter (Konica-Minol-
ta, Japan).

Aerial image acquisition

Aerial image acquisition was performed us-
ing a multispectral UAV (DJI Phantom 4 mul-
tispectral) at an altitude of 80 m above ground
level on four occasions (July 16, 2024, October
16, 2024, January 15, 2025, and April 18, 2025)
to represent seasonal variations. All flights were
conducted between 09:00 and 11:00 local time
under clear-sky conditions. Flight missions were
planned using the DJI GS Pro application, which
was configured with 75% front overlap and 70%
side overlap. Prior to each flight mission, radio-
metric calibration was performed using a Spec-
tralon calibration reflectance panel (Labsphere,
North Sutton, NH, USA). The UAV data process-
ing workflow, from image acquisition to vegeta-
tion index extraction, is illustrated in Figure 3.
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Figure 2. Soil and leaf samples data collection process

The captured images were processed using
Agisoft Metashape Professional software (ver-
sion 1.8.4) to generate high-resolution outputs,
including dense point clouds (in LAS format),
digital surface models (DSM, in GeoTIFF for-
mat), and orthomosaics (in GeoTIFF format).
The orthomosaics were georeferenced to the
WGS 84/UTM Zone 48S coordinate system
(EPSG:32748). The soil background remov-
al process used spectral index segmentation
through the FIELDimageR package in RStudio.
Specifically, the HUE index was calculated from
the RGB bands and applied as a masking crite-
rion with a threshold value of 0. This approach
enables the separation of the vegetation canopy
from the ground background by retaining only
pixels with HUE index values above the speci-
fied threshold, thereby eliminating ground inter-
ference from subsequent vegetation analyses.

Individual palm canopies for the 45 sample
plants were delineated using the eCognition Oil
Palm Application 1.2, and the results were ex-
ported as polygon shapefiles. The multispec-
tral orthomosaics were then analyzed in QGIS
(version 3.28 ‘Firenze’) to compute 12 vegeta-
tion indices using the Raster calculator. Table 1
presents the vegetation indices that were used as
predictors. The Zonal Statistics tool was used to
extract the mean value of each vegetation index
for every delineated canopy, providing a dataset

for subsequent predictive modeling of the field-
measured parameters (SM, LWC, and LG).

The collected data on SM, LWC, and LG
were initially analyzed using descriptive sta-
tistics. Pearson’s correlation analysis was con-
ducted to examine the basic characteristics and
relationships of the data. Subsequently, predic-
tive models were employed using three machine
learning algorithms: random forest regression
(RFR), partial least squares regression (PLSR),
and support vector regression (SVR), with veg-
etation indices as predictors. Analyses were per-
formed using RStudio version 4.3.2. The dataset
was partitioned using the caret package into a
70% training set and a 30% testing set through
stratified random sampling, ensuring represen-
tative distribution across all seasonal periods.
Hyperparameter optimization was conducted
automatically via 5-fold cross-validation imple-
mented through the trainControl function in the
‘caret’ package. RFR models were tuned using
the ‘randomForest’ package with the number of
variables randomly sampled at each split (mtry)
optimized over the set {2, 3, 5}. PLSR was con-
ducted with the ‘pls’ package, selecting the op-
timal number of components (ncomp) from 1 to
10. SVR with a radial basis function kernel was
implemented using the ‘kernlab’ package, where
the cost parameter (C) was tuned over {0.1, 1,
10} and the kernel coefficient (sigma) was tuned
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over {0.01, 0.1, 1}. Data manipulation and vi-
sualization were facilitated using the ‘dplyr’ and
‘ggplot2’ packages, respectively.

The model performance was evaluated using
the coefficient of determination (R?), root mean
squared error (RMSE), and mean absolute error
(MAE). These metrics were calculated directly
using custom R functions within the RStudio en-
vironment, without requiring additional special-
ized packages. The R? values were derived by
squaring the Pearson correlation coefficient be-
tween the observed and estimated values, where-
as the RMSE and MAE were computed using
standard mathematical formulas. Higher R? val-
ues correspond to lower RMSE and MAE values,
indicating better model accuracy and estimation
precision. Spatial estimation maps for four moni-
toring periods were generated by applying the
best-performing estimation model to all oil palm
trees across the plantation. The estimated pa-
rameters of water status and leaf greenness were
subsequently used for K-means clustering, with
the resulting clusters validated against measured
fruit production data (black bunch census). Fi-
nally, a comprehensive susceptibility assessment
map was developed by evaluating the combined
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frequency of high soil moisture events and de-
pressed leaf greenness values. The three-level
susceptibility classification is based on K-means
cluster analysis that identifies patterns of relation-
ships between soil moisture, leaf greenness, and
productivity, where high susceptibility criteria are
applied to plants with soil moisture frequencies
above field capacity >2 periods and LG <69.21,
medium susceptibility for frequencies >2 and LG
>69.21, and low susceptibility for frequencies <2,
with the leaf greenness threshold of 69.21 repre-
senting the lower limit of productivity that is still
acceptable based on field data. The workflow of
the research procedure is presented in Figure 4.

RESULT AND DISCUSSION

Descriptive statistics and seasonal variations

Table 2 summarizes the data distribution of
the entire dataset, as well as the training and vali-
dation subsets, for SM, LWC, and LG parameters.
The distribution patterns across observation pe-
riods reflected temporal changes in environmen-
tal conditions and the physiological responses of
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plants. Field measurements in January 2025 ex-
hibited elevated SM and LWC values, with rang-
es of 47.66—67.93% for SM and 55.71-82.20%

Table 1. List of vegetation indices

Vegetation indices References
NIR — Red (Rouse et al.,
NDVI'= 1R T Red 1974)
NIR — Green (Gitelson and
GNDVI = NIR + Green Merzlyak, 1996)
SR = NIR (Baret and Guyot,
~ Red 1991)
NIR
5)—1
MSR = (Red)

— hen, 1
NIR » (Chen, 1996)
Red

NIR — Red edge

NDRE = ————— H t al., 1975
NIR + Red edge (Haas eta )
Lel = NIR — Red edge (Zebarth et al.,
" NIR + Red 2002)
c _ NIR (Gitelson et al.,
lgreen = Green 2005)
cl __NR (Gitelson et al.,
rededge ™ peod edge 2005)
Red (Anderson et al.,
RVI = w3 1993)
Green — Red
MPR] = —— Yang et al., 2008
Green + Red (Yang )
Evi (Huete et al
_ s NIR — Red oo
(NIR + 6 Red — 7.5 Blue) + 1
NIR — Red
SAVI = 1.5 (Huete, 1988)

(NIR + Red + 0.5)

for LWC, which were higher than those observed
in other periods. Despite these high values, both
parameters showed reduced variability during
this period, as indicated by lower coefficients of
variation and pronounced distribution peaks, sug-
gesting more homogeneous and saturated soil
and plant water conditions. The highest SM val-
ues recorded in January 2025 indicate persistently
humid field conditions, whereas the lowest SM
values occurred in July 2024, reflecting compara-
tively drier conditions. Seasonal changes in SM
were consistently mirrored by LWC dynamics,
highlighting the close coupling between soil wa-
ter availability and plant water status. In contrast,
LG values remained relatively stable across all
observation periods, exhibiting lower variability
and near-symmetric distributions, indicating that
leaf chlorophyll content was less sensitive to sea-
sonal fluctuations in soil water content.
Variations in the distribution between obser-
vation periods indicated differences in the level
of diversity of SM and LWC values, possibly
influenced by precipitation dynamics (Figure 5).
Meteorological data is available online at URL:
https://smpr-geomet.com/dashboard. The highest
precipitation intensity occurred from October to
December 2024, followed by a decrease in early
2025. The increase in precipitation in late 2024
likely caused higher groundwater accumulation,
resulting in increased SM and LWC values during
that period, owing to the abundant water avail-
ability in the root zone and leaf tissue. Converse-
ly, during the period of low precipitation (January
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2. Data Processing

3. Analysis and
Visualization

UAV imagery processing ‘

UAV Acquisition >I

Analysis of field
»/observation results and

July 2024

{ { l
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vegetation indices

October 2024 £ —

January 2025

April 2025

Field Observation
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Field observation
data

- Soil moisture value

- Leaf water content
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Machine learning
modelling
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Spatial detection of
sample trees

A

!

Prediction and
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Figure 4. Workflow of waterlogging susceptibility assessment in oil palm plantation
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Table 2. Summary statistics of soil moisture, leaf water content, and leaf greenness across four

sampling periods (n = 45)

Parameter Min Max Mean Median SD CcVv Skewness Kurtosis
SM July 2024 25.05 51.10 36.72 36.58 6.81 18.60 0.32 2.27
SM October 2024 29.24 57.98 41.10 39.94 6.17 15.00 0.63 3.40
SM January 2025 47.66 67.93 60.54 60.92 3.15 5.20 -1.45 8.07
SM April 2025 29.06 54.49 41.45 42.91 6.25 15.10 -0.22 2.58
LWC July 2024 41.85 53.41 48.88 49.09 2.80 5.70 -0.61 3.17
LWC October 2024 51.70 65.66 56.48 56.42 2.18 3.90 1.40 8.49
LWC January 2025 55.71 82.20 60.76 59.51 4.90 8.10 3.00 12.56
LWC April 2025 48.45 56.98 52.71 52.98 1.80 3.40 -0.16 2.79
LG July 2024 53.03 79.77 70.70 71.43 6.46 9.10 -0.96 3.52
LG October 2024 56.67 91.57 73.21 73.93 7.99 10.90 0.04 2.80
LG January 2025 54.13 81.77 71.60 72.00 5.79 8.10 -0.56 3.42
LG April 2025 59.40 79.69 71.56 72.04 5.38 7.50 -0.38 2.26
Note: SM = soil moisture, LWC = leaf water content, and LG = leaf greenness.
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Figure 5. Daily precipitation data during the research period

to April 2025), SM and LWC values decreased,
indicating drier soil conditions and reduced leaf
water content. In contrast, the LG value was rela-
tively constant between periods compared to SM
and LWC, indicating that the chlorophyll content
of oil palm leaves was not directly affected by
precipitation fluctuations but was more influenced
by the plant’s internal physiological conditions,
which adapted to changes in water availability.

Estimation results using machine learning
models

The performances of the SM, LWC, and LG
estimation models varied across the observation
periods and algorithms (Table 3). The estimation
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method using multiple vegetation indices as model
input variables can increase model accuracy com-
pared to using single vegetation indices (Wu et
al., 2023). In general, PLSR demonstrated a more
stable performance for predicting SM and LWC,
particularly in April 2025, with the highest accu-
racy (R? = 0.613 and R? = 0.492, respectively).
During periods of high precipitation, such as Octo-
ber 2024, the model performance declined, likely
because of the decreased spatial heterogeneity in
soil moisture, which affected the consistency of the
spectral signal. Leaf water content can be estimated
more accurately under conditions with more con-
trolled environmental variability (Alordzinu et al.,
2021). In contrast, the relationship between spec-
tral reflectance and leaf tissue water content during
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Table 3. Performance of SM, LWC, and LG estimation models on four seasonal variations

Parameter Period Model R? RMSE MAE
SM July 2024 RFR 0.095 6.114 5.090
SM July 2024 PLSR 0.340 4.985 3.924
SM July 2024 SVR 0.195 5.496 4.424

LwC July 2024 RFR 0.010 3.183 2.575
LwC July 2024 PLSR 0.015 3.053 2.584
LwC July 2024 SVR 0.225 3.476 2.429
LG July 2024 RFR 0.633 4.308 3.726
LG July 2024 PLSR 0.442 5.036 4.061
LG July 2024 SVR 0.472 5.263 4127
SM October 2024 RFR 0.151 5.619 4.050
SM October 2024 PLSR 0.307 5.047 3.376
SM October 2024 SVR 0.326 5.017 3.387
LwcC October 2024 RFR 0.001 3.190 2.315
LwcC October 2024 PLSR 0.022 3.089 2.106
LwcC October 2024 SVR 0.035 3.083 2127
LG October 2024 RFR 0.461 8.150 6.948
LG October 2024 PLSR 0.000 6.931 5.227
LG October 2024 SVR 0.007 6.492 5.170
SM January 2025 RFR 0.019 4.843 4.141
SM January 2025 PLSR 0.001 4.896 4.357
SM January 2025 SVR 0.023 4.480 3.788
LwcC January 2025 RFR 0.027 3.629 2.601
LwcC January 2025 PLSR 0.087 3.866 3.132
LwcC January 2025 SVR 0.054 3.496 2.365
LG January 2025 RFR 0.827 5.552 4.267
LG January 2025 PLSR 0.796 5.919 4.589
LG January 2025 SVR 0.115 7.068 5.425
SM April 2025 RFR 0.102 6.295 5.188
SM April 2025 PLSR 0.613 4.775 3.462
SM April 2025 SVR 0.277 6.582 5.094
LwcC April 2025 RFR 0.092 2.190 1.792
LwcC April 2025 PLSR 0.492 1.834 1.331
LwcC April 2025 SVR 0.000 2.374 1.884
LG April 2025 RFR 0.342 4.927 3.975
LG April 2025 PLSR 0.500 4.470 3.676
LG April 2025 SVR 0.332 5.104 4.337

Note: SM = soil moisture, LWC = leaf water content, LG = leaf greenness.

wet periods becomes more complex (Yang et al.,
2023). These results confirm that the influence of
atmospheric conditions and leaf surface water con-
tent must be considered in multispectral data-based
modeling. RFR provided the best results for LG
estimation, particularly in January 2025, indicating
the model’s ability to better capture variations in
chlorophyll content (R* = 0.827). The differences
in model performance between periods reflect the

influence of seasonal environmental conditions on
spectral relationships and physiological variables,
as reported by Ismail et al. (2025), that seasonal
fluctuations in vegetation health also determine
the strength of spectral relationships, where wet-
ter periods produce more accurate estimation. Both
models were also robust to data containing multi-
collinearity (Li et al., 2025). Differences in the ca-
pabilities of algorithm models are a consideration
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when selecting multispectral data-based models,
particularly under the influence of atmospheric
conditions and leaf surface water content (Qu et
al., 2024; Tang et al., 2022).

To further elucidate the underlying relation-
ships driving these model performances, a de-
tailed correlation analysis was conducted between
the measured parameters and various vegetation
indices. Based on Pearson’s correlation heatmap
(Figure 6), SM consistently showed a negative
correlation with most vegetation indices, except
for the RVI. The negative correlation was par-
ticularly strong with SR and MSR in July 2024,
October 2024, and April 2025, when soil mois-
ture conditions were not particularly high. This
indicates that increasing soil moisture decreases
the reflectance in the NIR and red bands, which
are sensitive to canopy water content. Converse-
ly, LWC showed a weak and inconsistent corre-
lation, indicating that leaf water content is more
influenced by internal physiological factors and
atmospheric conditions than by spectral varia-
tion. LG exhibited a pattern similar to that of SM
but with positive correlations with some vegeta-
tion indices throughout the observation period.
The strongest correlations were observed with

Lwc

LG

January 2025

- _’oml

006 005 -002 006 002 006 008 -001

Lwe 001 004 o001 o

- -!_ N I

AR A O S

red-edge-based indices, such as NDRE, LCI, and
Clrededge, in October 2024, January 2025, and
April 2025. These results demonstrate the advan-
tage of red edge reflectance for detecting varia-
tions in leaf chlorophyll content, as stated by Ali
et al. (2022), who reported that the red edge posi-
tion (REP) is strongly correlated with chlorophyll
content. Red-edge light can penetrate much fur-
ther into the leaf than blue or red light (Parida et
al., 2024). The relationship pattern confirms that
water-related variables (SM and LWC) are more
influenced by precipitation dynamics, whereas
LG is more stable and can be well explained by
changes in vegetation reflectance.

Best-performing models

Figure 7 presents the relationship between
the actual and estimated values based on the best
models identified previously. The PLSR model
demonstrated relatively high accuracy in predict-
ing soil moisture in April 2025 (R? = 0.613), in-
dicating its ability to capture a strong linear rela-
tionship between reflectance and soil water con-
tent. Weaker estimations in January 2025 suggest
reduced spectral sensitivity to soil moisture varia-
tions under wet conditions. For LWC, all models
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0.18
032 -0.15 -0.07
II I B -

April 2025

‘\o“\eeo“\é*éé"‘dﬁy‘#ff@f@;‘\

Correlation - -

-10 05 00 05 1.0

Figure 6. Comparison of performance metrics of different models for predicting SM, LWC, and LG
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Figure 8. Estimation map generated based on the best model

exhibited a weak relationship, with low R? values,
reflecting the limited wavelengths available for
the accurate detection of variations in leaf water
content. For LG, the estimation models consis-
tently performed best, particularly the RFR and
PLSR models in January and April, demonstrat-
ing a high level of agreement between the actual
and estimated values (R?> 0.79). The RFR model
appears to better capture nonlinear patterns be-
tween variables and is more adaptable to data
complexity, whereas PLSR has advantages in
terms of stability and easier interpretation of lin-
ear relationships. These two models complement
each other in modeling oil palm physiological pa-
rameters based on multispectral data.

The spatial estimation maps generated from
the best-performing models demonstrated the
practical potential of integrating multispectral
UAV data into precision agriculture workflows
(Figure 8). Due to its low predictive validity, the
estimation of leaf water content was excluded
from subsequent analysis. To assess waterlog-
ging susceptibility, we analyzed the frequency
of elevated soil moisture events, using the soil’s
field capacity (39%) as a critical threshold for
excess moisture, as established by Jazayeri et al.
(2015). A corresponding critical threshold for leaf
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greenness value of 67.71 was determined empiri-
cally from the K-means clustering results. This
value represents the midpoint between the maxi-
mum leaf greenness value observed in the lowest-
productivity cluster (Cluster 1) and the minimum
leaf greenness value in the intermediate-produc-
tivity cluster (Cluster 2), as shown in Figure 9a.
The integration of this biophysical clustering with
yield estimation from black bunch census con-
firmed that palm clusters exhibiting consistently
high soil moisture (exceeding field capacity) con-
currently with low leaf greenness (below the criti-
cal threshold) were associated with the lowest ag-
ricultural productivity (Figure 9b). This synthe-
sized susceptibility assessment was subsequently
used to generate a spatial map of waterlogging
susceptibility for the plantation (Figure 9c).

The spatial waterlogging susceptibility map
(Figure 9c) indicates that high susceptibility palms
(red; 10.13%) are concentrated in areas with com-
pacted soils and poor drainage function. Medium
susceptibility palms (yellow; 77.18%) generally
occupy areas with moderate soil wetness, includ-
ing several depressional sections observed in
the field, while low susceptibility palms (green,
12.69%) are distributed across well-drained por-
tions of the plantation. These spatial patterns are
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further intensified by the high precipitation char-
acteristics of Bogor Regency, which is known as
one of the wettest regions in Indonesia, receiving
approximately 2.961—4.266 mm of annual precip-
itation (Wardani et al., 2024). Such precipitation
conditions increase the likelihood of prolonged
soil saturation, especially in areas with limited
infiltration or inadequate drainage. These condi-
tions create a challenging environment for palm
growth, as prolonged waterlogging can lead to
root oxygen deficiency and increased susceptibil-
ity to diseases (den Besten et al., 2021; Walne and
Reddy, 2021). Effective drainage management is
therefore critical to mitigate this susceptibility
and sustain plantation productivity. Implementing
site-specific interventions, such as soil aeration or

constructing drainage channels, can help mitigate
the impacts of waterlogging in vulnerable zones
(Abubakar et al., 2021).

By estimating the spatial dynamics of crop
and soil biophysical parameters, these models
can support site-specific management practices.
In the future, this approach will provide a scalable
framework for real-time crop monitoring, en-
abling oil palm plantation management to make
data-driven decisions that improve resource effi-
ciency and resilience under varying hydrological
conditions. UAV-based remote sensing has strong
potential for operational applications in planta-
tion management, offering a rapid, non-destruc-
tive, and cost-effective method for assessing plant
health and productivity in oil palm cultivation.
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CONCLUSIONS

This study demonstrates the potential of using
UAV-based multispectral imagery combined with
three machine learning algorithms to estimate
water status and physiological parameters in oil
palm plantations under varying seasonal condi-
tions. Seasonal dynamics influence the relation-
ship between spectral responses and physiologi-
cal variables. The PLSR model provided the best
accuracy for soil moisture estimation, while RFR
and PLSR showed the highest performance for
estimating leaf greenness values. The accuracy of
the leaf water content model was relatively low,
indicating limited spectral sensitivity to variations
in leaf water content in dense oil palm canopies.
The results of this study emphasize the importance
of selecting a predictive modeling approach that
is tailored to the biophysical characteristics of the
target variables and the seasonally fluctuating field
conditions. These findings showed that multispec-
tral UAV imagery can provide reliable estimates
of leaf greenness and soil moisture. The spatial es-
timates of soil moisture and leaf greenness derived
from multispectral UAV imagery further enabled
the identification of palms susceptible to water-
logging stress. These spatial susceptibility assess-
ments offer a practical approach to mitigation and
support more informed decision-making for preci-
sion management in oil palm plantations.
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