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INTRODUCTION

Oil palm (Elaeis guineensis Jacq.) is a ma-
jor source of vegetable oil, accounting for 40% 
of global vegetable oil production, despite 

occupying only 5% of the land used for veg-
etable oil production (Jackson et al., 2019). The 
high productivity and economic value of oil 
palm enable the sustainable fulfillment of future 
oil demands (Murphy et al., 2021). To ensure 
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tainable plantation management.
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sustainability, the oil palm industry is focusing 
on increasing yields, improving oil quality, and 
enhancing climate adaptation through germ-
plasm exploitation and biotechnology (Malike 
et al., 2024). However, oil palm productivity is 
heavily influenced by climate factors, with water 
availability being the cornerstone of sustainable 
production (Rauf, 2025). Global climate change 
exacerbates this dependence, driving increased 
volatility in crude palm oil (CPO) yields through 
changes in precipitation patterns and other fac-
tors. Two unfavorable conditions, water deficit 
and excess, disrupt the balance of physiological 
processes in crops. Water deficit causes stoma-
tal closure, which reduces photosynthesis and 
disrupts nutrient uptake, leading to decreased 
growth (Neto et al., 2021) and reduced fruit 
bunch production (Khor et al., 2021). Conversely, 
prolonged waterlogging or flooding causes root 
hypoxia, which inhibits root respiration, triggers 
root rot, and ultimately reduces crop productivity 
(Abubakar et al., 2021). Therefore, effective and 
timely monitoring of plant water status is crucial 
for the proper management of water stress, al-
lowing interventions in plantation management 
to maintain the yield.

Conventional methods for monitoring crop 
water status, such as direct soil sampling or 
leaf water content measurements, are primarily 
point-based, labor-intensive, and impractical for 
large-scale plantations (Jha et al., 2025). Remote 
sensing technology offers a transformative solu-
tion for achieving efficiency and effectiveness. 
By measuring the electromagnetic radiation re-
flected by plant tissues, remote sensing enables 
non-destructive and spatial assessments of crop 
status. Unmanned aerial vehicle (UAV) are fur-
ther revolutionizing this field by bridging the gap 
between lower spatial resolution satellite imagery 
and the limitations of ground-based agronomic 
surveys. UAV equipped with multispectral sen-
sors provide data at high spatial and temporal 
resolutions, enabling precise monitoring of with-
in-field variability. This capability is particularly 
important for perennial crops, such as oil palms, 
where even subtle changes in canopy reflectance 
can be observed.

Vegetation indices (VI) obtained from re-
mote sensing platforms have emerged as power-
ful non-destructive proxies for monitoring plant 
and soil biophysical parameters (Falcioni et al., 
2023; Zeng et al., 2022). Previous studies have 
demonstrated the effectiveness of combining 

spectral indices with machine learning algo-
rithms to achieve high-precision estimates. For 
leaf water content (LWC) estimation using hy-
perspectral data, techniques such as competitive 
adaptive reweighted sampling (CARS) combined 
with support vector regression (SVR) or random 
forest (RF) algorithms have demonstrated high 
accuracy and robustness, with consistent results 
across ground-based and UAV platforms (Ji et al., 
2025; Wu et al., 2025). Machine learning model 
also significantly outperformed the traditional lin-
ear regression model for estimating chlorophyll 
content. Studies on crops such as winter wheat, 
corn, and canary have consistently found that al-
gorithms such as RF, SVR, and artificial neural 
networks (ANNs) provide superior results, with 
one ANN model for rice achieving very low error 
rates (Guo et al., 2022; Sarkar et al., 2018). Other 
studies have also shown a significant positive cor-
relation between soil moisture (SM) and chloro-
phyll content, suggesting that the VI can serve as 
an indicator of subsurface conditions (Ge et al., 
2019; Wang et al., 2021).

Although the use of remote sensing technol-
ogy has developed rapidly in monitoring plant 
physiological conditions, studies on monitoring 
and estimating soil moisture, leaf water content, 
and leaf greenness values in oil palm plantations 
are still relatively limited, especially under condi-
tions of dynamic climate variations, such as pre-
cipitation fluctuations. Furthermore, the impact 
of climate variation on the accuracy of multispec-
tral vegetation index-based estimation models 
has not been thoroughly studied. Therefore, this 
study aims to: (1) estimate soil moisture, leaf wa-
ter content, and leaf greenness from UAV mul-
tispectral imagery using machine learning, (2) 
develop a waterlogging susceptibility classifica-
tion, and (3) create spatial-temporal waterlogging 
susceptibility maps.

MATERIAL AND METHODS

Study area

This study was conducted at the Oil Palm 
Teaching Farm, Cikabayan, IPB University, Bo-
gor, Indonesia (6 °33’ 00.3 “S 106 °43’ 03.2” E), 
spanning an area of approximately 8 hectares 
(Figure 1). Oil palm plants were planted in 2011 
and have entered the mature phase. The research 
was carried out from July 2024 to October 2025. 
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Soil and leaf data collection

A field survey and observational approach 
were employed, integrating agronomic mea-
surements with multispectral UAV imagery. 
Field measurements, including soil moisture 
(SM), leaf water content (LWC), and leaf green-
ness (LG), were conducted four times: in July 
2024, October 2024, January 2025, and April 
2025 (Figure 2). A purposive sampling method 
was employed to select 45 sample plants (rep-
resenting 5% of the population, as indicated by 
a yellow circle on the map in Figure 1), chosen 
to cover a representative range of observed bio-
physical conditions across the plantation. Soil 
moisture was determined using the gravimetric 
method, whereby 50 g of soil samples were col-
lected in triplicate using an auger, weighed for 
the wet weight, oven-dried at 105 °C for 24 h, 
and then re-weighed for dry weight. SM was cal-
culated as: 

	 𝑆𝑆𝑆𝑆 =  
𝑊𝑊𝑊𝑊𝑊𝑊 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 −
− 𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  ×  100% 

 

𝐿𝐿𝐿𝐿𝐿𝐿 =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 −
− 𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  ×  100% 

	 (1)

The 17th leaf of each sample plant was also 
analyzed. LWC was determined by collecting 
leaf samples, recording the fresh weight, cutting 
leaves into smaller pieces, oven-drying at 80 °C 

for 48 h to obtain dry weight, and applying the 
following formula: 

	

𝑆𝑆𝑆𝑆 =  
𝑊𝑊𝑊𝑊𝑊𝑊 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 −
− 𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡

𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  ×  100% 

 

𝐿𝐿𝐿𝐿𝐿𝐿 =  
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 −
− 𝐷𝐷𝐷𝐷𝐷𝐷 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡
𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹ℎ 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡  ×  100% 

	 (2)

The LG value was measured directly using 
a SPAD-502 chlorophyll meter (Konica-Minol-
ta, Japan).

Aerial image acquisition

Aerial image acquisition was performed us-
ing a multispectral UAV (DJI Phantom 4 mul-
tispectral) at an altitude of 80 m above ground 
level on four occasions (July 16, 2024, October 
16, 2024, January 15, 2025, and April 18, 2025) 
to represent seasonal variations. All flights were 
conducted between 09:00 and 11:00 local time 
under clear-sky conditions. Flight missions were 
planned using the DJI GS Pro application, which 
was configured with 75% front overlap and 70% 
side overlap. Prior to each flight mission, radio-
metric calibration was performed using a Spec-
tralon calibration reflectance panel (Labsphere, 
North Sutton, NH, USA). The UAV data process-
ing workflow, from image acquisition to vegeta-
tion index extraction, is illustrated in Figure 3.

Figure 1. Study area at the Oil Palm Teaching Farm, Cikabayan, IPB University, Bogor, Indonesia
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The captured images were processed using 
Agisoft Metashape Professional software (ver-
sion 1.8.4) to generate high-resolution outputs, 
including dense point clouds (in LAS format), 
digital surface models (DSM, in GeoTIFF for-
mat), and orthomosaics (in GeoTIFF format). 
The orthomosaics were georeferenced to the 
WGS 84/UTM Zone 48S coordinate system 
(EPSG:32748). The soil background remov-
al process used spectral index segmentation 
through the FIELDimageR package in RStudio. 
Specifically, the HUE index was calculated from 
the RGB bands and applied as a masking crite-
rion with a threshold value of 0. This approach 
enables the separation of the vegetation canopy 
from the ground background by retaining only 
pixels with HUE index values above the speci-
fied threshold, thereby eliminating ground inter-
ference from subsequent vegetation analyses.

Individual palm canopies for the 45 sample 
plants were delineated using the eCognition Oil 
Palm Application 1.2, and the results were ex-
ported as polygon shapefiles. The multispec-
tral orthomosaics were then analyzed in QGIS 
(version 3.28 ‘Firenze’) to compute 12 vegeta-
tion indices using the Raster calculator. Table 1 
presents the vegetation indices that were used as 
predictors. The Zonal Statistics tool was used to 
extract the mean value of each vegetation index 
for every delineated canopy, providing a dataset 

for subsequent predictive modeling of the field-
measured parameters (SM, LWC, and LG).

The collected data on SM, LWC, and LG 
were initially analyzed using descriptive sta-
tistics. Pearson’s correlation analysis was con-
ducted to examine the basic characteristics and 
relationships of the data. Subsequently, predic-
tive models were employed using three machine 
learning algorithms: random forest regression 
(RFR), partial least squares regression (PLSR), 
and support vector regression (SVR), with veg-
etation indices as predictors. Analyses were per-
formed using RStudio version 4.3.2. The dataset 
was partitioned using the caret package into a 
70% training set and a 30% testing set through 
stratified random sampling, ensuring represen-
tative distribution across all seasonal periods. 
Hyperparameter optimization was conducted 
automatically via 5-fold cross-validation imple-
mented through the trainControl function in the 
‘caret’ package. RFR models were tuned using 
the ‘randomForest’ package with the number of 
variables randomly sampled at each split (mtry) 
optimized over the set {2, 3, 5}. PLSR was con-
ducted with the ‘pls’ package, selecting the op-
timal number of components (ncomp) from 1 to 
10. SVR with a radial basis function kernel was 
implemented using the ‘kernlab’ package, where 
the cost parameter (C) was tuned over {0.1, 1, 
10} and the kernel coefficient (sigma) was tuned 

Figure 2. Soil and leaf samples data collection process
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frequency of high soil moisture events and de-
pressed leaf greenness values. The three-level 
susceptibility classification is based on K-means 
cluster analysis that identifies patterns of relation-
ships between soil moisture, leaf greenness, and 
productivity, where high susceptibility criteria are 
applied to plants with soil moisture frequencies 
above field capacity ≥2 periods and LG <69.21, 
medium susceptibility for frequencies ≥2 and LG 
≥69.21, and low susceptibility for frequencies <2, 
with the leaf greenness threshold of 69.21 repre-
senting the lower limit of productivity that is still 
acceptable based on field data. The workflow of 
the research procedure is presented in Figure 4.

RESULT AND DISCUSSION

Descriptive statistics and seasonal variations

Table 2 summarizes the data distribution of 
the entire dataset, as well as the training and vali-
dation subsets, for SM, LWC, and LG parameters. 
The distribution patterns across observation pe-
riods reflected temporal changes in environmen-
tal conditions and the physiological responses of 

Figure 3. UAV data processing

over {0.01, 0.1, 1}. Data manipulation and vi-
sualization were facilitated using the ‘dplyr’ and 
‘ggplot2’ packages, respectively.

The model performance was evaluated using 
the coefficient of determination (R²), root mean 
squared error (RMSE), and mean absolute error 
(MAE). These metrics were calculated directly 
using custom R functions within the RStudio en-
vironment, without requiring additional special-
ized packages. The R² values were derived by 
squaring the Pearson correlation coefficient be-
tween the observed and estimated values, where-
as the RMSE and MAE were computed using 
standard mathematical formulas. Higher R² val-
ues correspond to lower RMSE and MAE values, 
indicating better model accuracy and estimation 
precision. Spatial estimation maps for four moni-
toring periods were generated by applying the 
best-performing estimation model to all oil palm 
trees across the plantation. The estimated pa-
rameters of water status and leaf greenness were 
subsequently used for K-means clustering, with 
the resulting clusters validated against measured 
fruit production data (black bunch census). Fi-
nally, a comprehensive susceptibility assessment 
map was developed by evaluating the combined 
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plants. Field measurements in January 2025 ex-
hibited elevated SM and LWC values, with rang-
es of 47.66–67.93% for SM and 55.71–82.20% 

for LWC, which were higher than those observed 
in other periods. Despite these high values, both 
parameters showed reduced variability during 
this period, as indicated by lower coefficients of 
variation and pronounced distribution peaks, sug-
gesting more homogeneous and saturated soil 
and plant water conditions. The highest SM val-
ues recorded in January 2025 indicate persistently 
humid field conditions, whereas the lowest SM 
values occurred in July 2024, reflecting compara-
tively drier conditions. Seasonal changes in SM 
were consistently mirrored by LWC dynamics, 
highlighting the close coupling between soil wa-
ter availability and plant water status. In contrast, 
LG values remained relatively stable across all 
observation periods, exhibiting lower variability 
and near-symmetric distributions, indicating that 
leaf chlorophyll content was less sensitive to sea-
sonal fluctuations in soil water content.

Variations in the distribution between obser-
vation periods indicated differences in the level 
of diversity of SM and LWC values, possibly 
influenced by precipitation dynamics (Figure 5). 
Meteorological data is available online at URL: 
https://smpr-geomet.com/dashboard. The highest 
precipitation intensity occurred from October to 
December 2024, followed by a decrease in early 
2025. The increase in precipitation in late 2024 
likely caused higher groundwater accumulation, 
resulting in increased SM and LWC values ​​during 
that period, owing to the abundant water avail-
ability in the root zone and leaf tissue. Converse-
ly, during the period of low precipitation (January 

Table 1. List of vegetation indices

Figure 4. Workflow of waterlogging susceptibility assessment in oil palm plantation

Vegetation indices References 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 (Rouse et al., 

1974) 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 =  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 (Gitelson and 

Merzlyak, 1996) 

𝑆𝑆𝑆𝑆 =  𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅𝑅𝑅 (Baret and Guyot, 

1991) 

𝑀𝑀𝑀𝑀𝑀𝑀 =
(NIR

Red) − 1

√𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅𝑅𝑅 + 1

 (Chen, 1996) 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 (Haas et al., 1975) 

𝐿𝐿𝐿𝐿𝐿𝐿 =  𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅  (Zebarth et al., 

2002) 

𝐶𝐶𝐶𝐶𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 =  𝑁𝑁𝑁𝑁𝑁𝑁
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 1 (Gitelson et al., 

2005) 

𝐶𝐶𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =  𝑁𝑁𝑁𝑁𝑁𝑁
𝑅𝑅𝑅𝑅𝑅𝑅 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 1 (Gitelson et al., 

2005) 

𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑅𝑅𝑅𝑅𝑅𝑅
𝑁𝑁𝑁𝑁𝑁𝑁 (Anderson et al., 

1993) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝑅𝑅𝑅𝑅𝑅𝑅
𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 + 𝑅𝑅𝑅𝑅𝑅𝑅 (Yang et al., 2008) 

𝐸𝐸𝐸𝐸𝐸𝐸
=  2.5 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅

(𝑁𝑁𝑁𝑁𝑁𝑁 + 6 𝑅𝑅𝑅𝑅𝑅𝑅 − 7.5 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) + 1 
(Huete et al., 

1999) 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 =  1.5 𝑁𝑁𝑁𝑁𝑁𝑁 − 𝑅𝑅𝑅𝑅𝑅𝑅
(𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑅𝑅𝑅𝑅𝑅𝑅 + 0.5) (Huete, 1988) 
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to April 2025), SM and LWC values ​​decreased, 
indicating drier soil conditions and reduced leaf 
water content. In contrast, the LG value was rela-
tively constant between periods compared to SM 
and LWC, indicating that the chlorophyll content 
of oil palm leaves was not directly affected by 
precipitation fluctuations but was more influenced 
by the plant’s internal physiological conditions, 
which adapted to changes in water availability.

Estimation results using machine learning 
models

The performances of the SM, LWC, and LG 
estimation models varied across the observation 
periods and algorithms (Table 3). The estimation 

method using multiple vegetation indices as model 
input variables can increase model accuracy com-
pared to using single vegetation indices (Wu et 
al., 2023). In general, PLSR demonstrated a more 
stable performance for predicting SM and LWC, 
particularly in April 2025, with the highest accu-
racy (R² = 0.613 and R² = 0.492, respectively). 
During periods of high precipitation, such as Octo-
ber 2024, the model performance declined, likely 
because of the decreased spatial heterogeneity in 
soil moisture, which affected the consistency of the 
spectral signal. Leaf water content can be estimated 
more accurately under conditions with more con-
trolled environmental variability (Alordzinu et al., 
2021). In contrast, the relationship between spec-
tral reflectance and leaf tissue water content during 

Table 2. Summary statistics of soil moisture, leaf water content, and leaf greenness across four 		
sampling periods (n = 45)

Parameter Min Max Mean Median SD CV Skewness Kurtosis

SM July 2024 25.05 51.10 36.72 36.58 6.81 18.60 0.32 2.27

SM October 2024 29.24 57.98 41.10 39.94 6.17 15.00 0.63 3.40

SM January 2025 47.66 67.93 60.54 60.92 3.15 5.20 -1.45 8.07

SM April 2025 29.06 54.49 41.45 42.91 6.25 15.10 -0.22 2.58

LWC July  2024 41.85 53.41 48.88 49.09 2.80 5.70 -0.61 3.17

LWC October 2024 51.70 65.66 56.48 56.42 2.18 3.90 1.40 8.49

LWC January 2025 55.71 82.20 60.76 59.51 4.90 8.10 3.00 12.56

LWC April 2025 48.45 56.98 52.71 52.98 1.80 3.40 -0.16 2.79

LG July  2024 53.03 79.77 70.70 71.43 6.46 9.10 -0.96 3.52

LG October 2024 56.67 91.57 73.21 73.93 7.99 10.90 0.04 2.80

LG January 2025 54.13 81.77 71.60 72.00 5.79 8.10 -0.56 3.42

LG April 2025 59.40 79.69 71.56 72.04 5.38 7.50 -0.38 2.26

Note: SM = soil moisture, LWC = leaf water content, and LG = leaf greenness.

Figure 5. Daily precipitation data during the research period
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wet periods becomes more complex (Yang et al., 
2023). These results confirm that the influence of 
atmospheric conditions and leaf surface water con-
tent must be considered in multispectral data-based 
modeling. RFR provided the best results for LG 
estimation, particularly in January 2025, indicating 
the model’s ability to better capture variations in 
chlorophyll content (R² = 0.827). The differences 
in model performance between periods reflect the 

influence of seasonal environmental conditions on 
spectral relationships and physiological variables, 
as reported by Ismail et al. (2025), that seasonal 
fluctuations in vegetation health also determine 
the strength of spectral relationships, where wet-
ter periods produce more accurate estimation. Both 
models were also robust to data containing multi-
collinearity (Li et al., 2025). Differences in the ca-
pabilities of algorithm models are a consideration 

Table 3. Performance of SM, LWC, and LG estimation models on four seasonal variations
Parameter Period Model R2 RMSE MAE

SM July 2024 RFR 0.095 6.114 5.090

SM July 2024 PLSR 0.340 4.985 3.924
SM July 2024 SVR 0.195 5.496 4.424

LWC July 2024 RFR 0.010 3.183 2.575

LWC July 2024 PLSR 0.015 3.053 2.584

LWC July 2024 SVR 0.225 3.476 2.429
LG July 2024 RFR 0.633 4.308 3.726
LG July 2024 PLSR 0.442 5.036 4.061

LG July 2024 SVR 0.472 5.263 4.127

SM October 2024 RFR 0.151 5.619 4.050

SM October 2024 PLSR 0.307 5.047 3.376

SM October 2024 SVR 0.326 5.017 3.387
LWC October 2024 RFR 0.001 3.190 2.315

LWC October 2024 PLSR 0.022 3.089 2.106

LWC October 2024 SVR 0.035 3.083 2.127
LG October 2024 RFR 0.461 8.150 6.948
LG October 2024 PLSR 0.000 6.931 5.227

LG October 2024 SVR 0.007 6.492 5.170

SM January 2025 RFR 0.019 4.843 4.141

SM January 2025 PLSR 0.001 4.896 4.357

SM January 2025 SVR 0.023 4.480 3.788
LWC January 2025 RFR 0.027 3.629 2.601

LWC January 2025 PLSR 0.087 3.866 3.132
LWC January 2025 SVR 0.054 3.496 2.365

LG January 2025 RFR 0.827 5.552 4.267
LG January 2025 PLSR 0.796 5.919 4.589

LG January 2025 SVR 0.115 7.068 5.425

SM April 2025 RFR 0.102 6.295 5.188

SM April 2025 PLSR 0.613 4.775 3.462
SM April 2025 SVR 0.277 6.582 5.094

LWC April 2025 RFR 0.092 2.190 1.792

LWC April 2025 PLSR 0.492 1.834 1.331
LWC April 2025 SVR 0.000 2.374 1.884

LG April 2025 RFR 0.342 4.927 3.975

LG April 2025 PLSR 0.500 4.470 3.676
LG April 2025 SVR 0.332 5.104 4.337

Note: SM = soil moisture, LWC = leaf water content, LG = leaf greenness.
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when selecting multispectral data-based models, 
particularly under the influence of atmospheric 
conditions and leaf surface water content (Qu et 
al., 2024; Tang et al., 2022).

To further elucidate the underlying relation-
ships driving these model performances, a de-
tailed correlation analysis was conducted between 
the measured parameters and various vegetation 
indices. Based on Pearson’s correlation heatmap 
(Figure 6), SM consistently showed a negative 
correlation with most vegetation indices, except 
for the RVI. The negative correlation was par-
ticularly strong with SR and MSR in July 2024, 
October 2024, and April 2025, when soil mois-
ture conditions were not particularly high. This 
indicates that increasing soil moisture decreases 
the reflectance in the NIR and red bands, which 
are sensitive to canopy water content. Converse-
ly, LWC showed a weak and inconsistent corre-
lation, indicating that leaf water content is more 
influenced by internal physiological factors and 
atmospheric conditions than by spectral varia-
tion. LG exhibited a pattern similar to that of SM 
but with positive correlations with some vegeta-
tion indices throughout the observation period. 
The strongest correlations were observed with 

red-edge-based indices, such as NDRE, LCI, and 
CIrededge, in October 2024, January 2025, and 
April 2025. These results demonstrate the advan-
tage of red edge reflectance for detecting varia-
tions in leaf chlorophyll content, as stated by Ali 
et al. (2022), who reported that the red edge posi-
tion (REP) is strongly correlated with chlorophyll 
content. Red-edge light can penetrate much fur-
ther into the leaf than blue or red light (Parida et 
al., 2024). The relationship pattern confirms that 
water-related variables (SM and LWC) are more 
influenced by precipitation dynamics, whereas 
LG is more stable and can be well explained by 
changes in vegetation reflectance.

Best-performing models

Figure 7 presents the relationship between 
the actual and estimated values ​​based on the best 
models identified previously. The PLSR model 
demonstrated relatively high accuracy in predict-
ing soil moisture in April 2025 (R² = 0.613), in-
dicating its ability to capture a strong linear rela-
tionship between reflectance and soil water con-
tent. Weaker estimations in January 2025 suggest 
reduced spectral sensitivity to soil moisture varia-
tions under wet conditions. For LWC, all models 

Figure 6. Comparison of performance metrics of different models for predicting SM, LWC, and LG
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Figure 7. Actual vs estimated values of SM, LWC, and LG from the best model
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exhibited a weak relationship, with low R² values, 
reflecting the limited wavelengths available for 
the accurate detection of variations in leaf water 
content. For LG, the estimation models consis-
tently performed best, particularly the RFR and 
PLSR models in January and April, demonstrat-
ing a high level of agreement between the actual 
and estimated values (R² > 0.79). The RFR model 
appears to better capture nonlinear patterns be-
tween variables and is more adaptable to data 
complexity, whereas PLSR has advantages in 
terms of stability and easier interpretation of lin-
ear relationships. These two models complement 
each other in modeling oil palm physiological pa-
rameters based on multispectral data.

The spatial estimation maps generated from 
the best-performing models demonstrated the 
practical potential of integrating multispectral 
UAV data into precision agriculture workflows 
(Figure 8). Due to its low predictive validity, the 
estimation of leaf water content was excluded 
from subsequent analysis. To assess waterlog-
ging susceptibility, we analyzed the frequency 
of elevated soil moisture events, using the soil’s 
field capacity (39%) as a critical threshold for 
excess moisture, as established by Jazayeri et al. 
(2015). A corresponding critical threshold for leaf 

greenness value of 67.71 was determined empiri-
cally from the K-means clustering results. This 
value represents the midpoint between the maxi-
mum leaf greenness value observed in the lowest-
productivity cluster (Cluster 1) and the minimum 
leaf greenness value in the intermediate-produc-
tivity cluster (Cluster 2), as shown in Figure 9a. 
The integration of this biophysical clustering with 
yield estimation from black bunch census con-
firmed that palm clusters exhibiting consistently 
high soil moisture (exceeding field capacity) con-
currently with low leaf greenness (below the criti-
cal threshold) were associated with the lowest ag-
ricultural productivity (Figure 9b). This synthe-
sized susceptibility assessment was subsequently 
used to generate a spatial map of waterlogging 
susceptibility for the plantation (Figure 9c).

The spatial waterlogging susceptibility map 
(Figure 9c) indicates that high susceptibility palms 
(red; 10.13%) are concentrated in areas with com-
pacted soils and poor drainage function. Medium 
susceptibility palms (yellow; 77.18%) generally 
occupy areas with moderate soil wetness, includ-
ing several depressional sections observed in 
the field, while low susceptibility palms (green, 
12.69%) are distributed across well-drained por-
tions of the plantation. These spatial patterns are 

Figure 8. Estimation map generated based on the best model
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further intensified by the high precipitation char-
acteristics of Bogor Regency, which is known as 
one of the wettest regions in Indonesia, receiving 
approximately 2.961–4.266 mm of annual precip-
itation (Wardani et al., 2024). Such precipitation 
conditions increase the likelihood of prolonged 
soil saturation, especially in areas with limited 
infiltration or inadequate drainage. These condi-
tions create a challenging environment for palm 
growth, as prolonged waterlogging can lead to 
root oxygen deficiency and increased susceptibil-
ity to diseases (den Besten et al., 2021; Walne and 
Reddy, 2021). Effective drainage management is 
therefore critical to mitigate this susceptibility 
and sustain plantation productivity. Implementing 
site-specific interventions, such as soil aeration or 

constructing drainage channels, can help mitigate 
the impacts of waterlogging in vulnerable zones 
(Abubakar et al., 2021).

By estimating the spatial dynamics of crop 
and soil biophysical parameters, these models 
can support site-specific management practices. 
In the future, this approach will provide a scalable 
framework for real-time crop monitoring, en-
abling oil palm plantation management to make 
data-driven decisions that improve resource effi-
ciency and resilience under varying hydrological 
conditions. UAV-based remote sensing has strong 
potential for operational applications in planta-
tion management, offering a rapid, non-destruc-
tive, and cost-effective method for assessing plant 
health and productivity in oil palm cultivation.

Figure 9. Clustering of oil palm trees based on average values ​​of soil moisture and leaf greenness (a), 
distribution of annual fresh fruit bunch yield across clusters used for validation (b), and spatial distribution 		

of waterlogging susceptibility levels (c)
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CONCLUSIONS

This study demonstrates the potential of using 
UAV-based multispectral imagery combined with 
three machine learning algorithms to estimate 
water status and physiological parameters in oil 
palm plantations under varying seasonal condi-
tions. Seasonal dynamics influence the relation-
ship between spectral responses and physiologi-
cal variables. The PLSR model provided the best 
accuracy for soil moisture estimation, while RFR 
and PLSR showed the highest performance for 
estimating leaf greenness values. The accuracy of 
the leaf water content model was relatively low, 
indicating limited spectral sensitivity to variations 
in leaf water content in dense oil palm canopies. 
The results of this study emphasize the importance 
of selecting a predictive modeling approach that 
is tailored to the biophysical characteristics of the 
target variables and the seasonally fluctuating field 
conditions. These findings showed that multispec-
tral UAV imagery can provide reliable estimates 
of leaf greenness and soil moisture. The spatial es-
timates of soil moisture and leaf greenness derived 
from multispectral UAV imagery further enabled 
the identification of palms susceptible to water-
logging stress. These spatial susceptibility assess-
ments offer a practical approach to mitigation and 
support more informed decision-making for preci-
sion management in oil palm plantations.
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