2020 |
Condro, Aryo Adhi; Setiawan, Yudi; Prasetyo, Lilik B; Pramulya, Rahmat; Siahaan, Lasriama Retrieving the National Main Commodity Maps in Indonesia Based on High-Resolution Remotely Sensed Data Using Cloud Computing Platform Journal Article In: Land, vol. 9, no. 10, pp. 377, 2020. Abstract | Links | BibTeX | Tags: commodity, GEE @article{Condro2020, Indonesia has the most favorable climates for agriculture because of its location in the tropical climatic zones. The country has several commodities to support economics growth that are driven by key export commodities—e.g., oil palm, rubber, paddy, cacao, and coffee. Thus, identifying the main commodities in Indonesia using spatially-explicit tools is essential to understand the precise productivity derived from the agricultural sectors. Many previous studies have used predictions developed using binary maps of general crop cover. Here, we present national commodity maps for Indonesia based on remote sensing data using Google Earth Engine. We evaluated a machine learning algorithm—i.e., Random Forest to parameterize how the area in commodity varied in Indonesia. We used various predictors to estimate the productivity of various commodities based on multispectral satellite imageries (36 predictors) at 30-meters spatial resolution. The national commodity map has a relatively high accuracy, with an overall accuracy of about 95% and Kappa coefficient of about 0.90. The results suggest that the oil palm plantation was the highest commodity product that occupied the largest land of Indonesia. However, this study also showed that the land area in rubber, rice paddies, and cacao commodities was underestimated due to its lack of training samples. Improvement in training data collection for each commodity should be done to increase the accuracy of the commodity maps. The commodity data can be viewed online (website can be found in the end of conclusions). This data can further provide significant information related to the agricultural sectors to investigate food provisioning, particularly in Indonesia. |
Kamal, Muhammad; Farda, Nur Mohammad; Jamaluddin, Ilham; Parela, Artha; Wikantika, Ketut; Prasetyo, Lilik B; Irawan, Bambang A preliminary study on machine learning and google earth engine for mangrove mapping Conference vol. 500, IOP Conf. Ser.: Earth Environ. Sci, 2020. Abstract | Links | BibTeX | Tags: GEE, machine learning, mangrove @conference{Kamal2020, The alarming rate of global mangrove forest degradation corroborates the need for providing fast, up-to-date and accurate mangrove maps. Conventional scene by scene image classification approach is inefficient and time consuming. The development of Google Earth Engine (GEE) provides a cloud platform to access and seamlessly process large amount of freely available satellite imagery. The GEE also provides a set of the state-of-the-art classifiers for pixel-based classification that can be used for mangrove mapping. This study is an initial effort which is aimed to combine machine learning and GEE for mapping mangrove extent. We used two Landsat 8 scenes over Agats and Timika Papua area as pilot images for this study; path 102 row 64 (2014/10/19) and path 103 row 63 (2013/05/16). The first image was used to develop local training areas for the machine learning classification, while the second one was used as a test image for GEE on the cloud. A total of 838 points samples were collected representing mangroves (244), non-mangroves (161), water bodies (311), and cloud (122) class. These training areas were used by support vector machine classifier in GEE to classify the first image. The classification result show mangrove objects could be efficiently delineated by this algorithm as confirmed by visual checking. This algorithm was then applied to the second image in GEE to check the consistency of the result. A simultaneous view of both classified images shows a corresponding pattern of mangrove forest, which mean the mangrove object has been consistently delineated by the algorithm. |
2020 |
Retrieving the National Main Commodity Maps in Indonesia Based on High-Resolution Remotely Sensed Data Using Cloud Computing Platform Journal Article In: Land, vol. 9, no. 10, pp. 377, 2020. |
A preliminary study on machine learning and google earth engine for mangrove mapping Conference vol. 500, IOP Conf. Ser.: Earth Environ. Sci, 2020. |