Setiawan, Yudi; Rushayati, Siti Badriyah; Hermawan, Rachmad; Prasetyo, Lilik B; Wijayanto, Arif K The effect of utilization patterns of green open space on the dynamics change of air quality due to the Covid-19 pandemic in Jabodetabek region Journal Article In: Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management), vol. 10, no. 4, pp. 559-567, 2020, ISSN: 2460-5824. @article{Setiawan2020,
title = {The effect of utilization patterns of green open space on the dynamics change of air quality due to the Covid-19 pandemic in Jabodetabek region},
author = {Yudi Setiawan and Siti Badriyah Rushayati and Rachmad Hermawan and Lilik B Prasetyo and Arif K Wijayanto},
url = {https://journal.ipb.ac.id/index.php/jpsl/article/view/32550},
doi = {10.29244/jpsl.10.4.559-567},
issn = {2460-5824},
year = {2020},
date = {2020-12-31},
journal = {Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan (Journal of Natural Resources and Environmental Management)},
volume = {10},
number = {4},
pages = {559-567},
abstract = {The Covid-19 pandemic has had a global impact on all sectors including the environment. The spread of covid-19 is very much influenced by human activity and mobility. Human activities are also closelyrelated to air pollutant emissions. High concentrations of air pollutants during the Covid-19 pandemic will increase the risk of being exposed to Covid-19. Jakarta and its surroundingarea (known locally as Jabodetabek) havehigh population density. Thesecities are economic and industrial centers. Air pollutant emissions in these cities are very high. High concentrations of air pollutants during the Covid-19 pandemic will increase the risk of being exposed to Covid. To anticipate this problem, the government made a Large-Scale Social Restriction Policy (PSBB). Limited human activities, in addition to having an impact on reducing the risk of humans being exposed to Covid-19 from the droplets released by tested-positive of Covid-19, also have an impact on reducing emissions of air pollutants so that they can reduce the risk of being exposed to Covid-19. Several variables that influence vulnerability and risk to exposure to Covid-19 are the distribution of settlements, roads, economic centers (markets, business centers, industrial centers), and human mobility. In this study, we will also analyze the role of green open space on the risk of exposure to Covid-19. Green open space plays an important role in reducing air pollutants so that it will also affect the risk of being exposed to Covid-19. This study aimedto 1) examine the distribution of air pollutants based on the vulnerability and risk of COVID-19 in Jakarta,Bogor, Depok, Tangerang, and Bekasi (Jabodetabek), and 2) examine the results of the overlay between land cover and vulnerability and risk to Covid-19},
keywords = {Covid-19, Kualitas udara, ruang terbuka hujau},
pubstate = {published},
tppubtype = {article}
}
The Covid-19 pandemic has had a global impact on all sectors including the environment. The spread of covid-19 is very much influenced by human activity and mobility. Human activities are also closelyrelated to air pollutant emissions. High concentrations of air pollutants during the Covid-19 pandemic will increase the risk of being exposed to Covid-19. Jakarta and its surroundingarea (known locally as Jabodetabek) havehigh population density. Thesecities are economic and industrial centers. Air pollutant emissions in these cities are very high. High concentrations of air pollutants during the Covid-19 pandemic will increase the risk of being exposed to Covid. To anticipate this problem, the government made a Large-Scale Social Restriction Policy (PSBB). Limited human activities, in addition to having an impact on reducing the risk of humans being exposed to Covid-19 from the droplets released by tested-positive of Covid-19, also have an impact on reducing emissions of air pollutants so that they can reduce the risk of being exposed to Covid-19. Several variables that influence vulnerability and risk to exposure to Covid-19 are the distribution of settlements, roads, economic centers (markets, business centers, industrial centers), and human mobility. In this study, we will also analyze the role of green open space on the risk of exposure to Covid-19. Green open space plays an important role in reducing air pollutants so that it will also affect the risk of being exposed to Covid-19. This study aimedto 1) examine the distribution of air pollutants based on the vulnerability and risk of COVID-19 in Jakarta,Bogor, Depok, Tangerang, and Bekasi (Jabodetabek), and 2) examine the results of the overlay between land cover and vulnerability and risk to Covid-19 |
Wijayanto, Arif K; Rushayati, Siti Badriyah; Hermawan, Rachmad; Setiawan, Yudi; Prasetyo, Lilik B Jakarta and Surabaya land surface temperature before and during the Covid-19 pandemic Journal Article In: AES Bioflux, vol. 12, no. 3, pp. 213-221, 2020, ISSN: 2066-7647. @article{Wijayanto2020,
title = {Jakarta and Surabaya land surface temperature before and during the Covid-19 pandemic},
author = {Arif K Wijayanto and Siti Badriyah Rushayati and Rachmad Hermawan and Yudi Setiawan and Lilik B Prasetyo},
url = {http://www.aes.bioflux.com.ro/docs/2020.213-221.pdf},
issn = {2066-7647},
year = {2020},
date = {2020-12-02},
journal = {AES Bioflux},
volume = {12},
number = {3},
pages = {213-221},
abstract = {The first incidence of the novel coronavirus or Covid-19 was reported in late 2019, and in the following year, the disease was declared a global pandemic. In Indonesia, the first case was reported in early March, 2020, and ever since, the government has appealed to the public to reduce outdoor activities in order to curtail the spread of the virus. Consequently, many companies and institutions implemented the ‘Work from Home’ (WFH) policy. At the end of April, the provincial government of Jakarta issued large-scale social restrictions, locally called PSBB. These restrictions were later implemented in other cities such as Surabaya. Jakarta was the epicentre of the spread of the virus in Indonesia, followed by Surabaya, the second largest city in the country. Therefore, this study aimed to analyze the Thermal Humidity Index (THI) of both cities, before and during the pandemic. Data were obtained from the MODIS Terra Land Surface Temperature and Emissivity 8-Day Global 1km, from the 1st to 14th May, 2019 (before the pandemic), and during the same period the following year (during the pandemic). Furthermore, data analysis was carried out using Google Earth Engine (GEE), a cloud-based platform for geo-spatial data analysis. The hypothesis in this study was that the social restriction policy caused a difference in the THI before and during the pandemic. Therefore, this hypothesis was proven by the results, as the policy caused a decrease in the THI during the pandemic.},
keywords = {Covid-19, Land Surface Temperature, urban heat island},
pubstate = {published},
tppubtype = {article}
}
The first incidence of the novel coronavirus or Covid-19 was reported in late 2019, and in the following year, the disease was declared a global pandemic. In Indonesia, the first case was reported in early March, 2020, and ever since, the government has appealed to the public to reduce outdoor activities in order to curtail the spread of the virus. Consequently, many companies and institutions implemented the ‘Work from Home’ (WFH) policy. At the end of April, the provincial government of Jakarta issued large-scale social restrictions, locally called PSBB. These restrictions were later implemented in other cities such as Surabaya. Jakarta was the epicentre of the spread of the virus in Indonesia, followed by Surabaya, the second largest city in the country. Therefore, this study aimed to analyze the Thermal Humidity Index (THI) of both cities, before and during the pandemic. Data were obtained from the MODIS Terra Land Surface Temperature and Emissivity 8-Day Global 1km, from the 1st to 14th May, 2019 (before the pandemic), and during the same period the following year (during the pandemic). Furthermore, data analysis was carried out using Google Earth Engine (GEE), a cloud-based platform for geo-spatial data analysis. The hypothesis in this study was that the social restriction policy caused a difference in the THI before and during the pandemic. Therefore, this hypothesis was proven by the results, as the policy caused a decrease in the THI during the pandemic. |